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Foundation models, including large language models, vision-language models, and similar large-scale machine
learning tools, are quickly becoming ubiquitous in society and in the professional world. Chemical practitioners
are not immune to the appeal of foundation models, nor are they immune to the many risks and harms that
these models introduce. In this work, I present the first analysis of foundation models using the lens of
scientific ethics and chemical professional ethics. I find that common general-purpose foundation models are
essentially incompatible with the moral practice of chemistry, though there are fewer ethical problems with
chemistry-specific foundation models. My discussion, which includes environmental harm, epistemological risk,
labor ethics, and more, concludes with an examination of how the harm associated with foundation models can
be minimized and further poses a set of serious lingering questions for chemical practitioners and scientific
ethicists.

1 Introduction
In recent years, machine learning (ML) models have grown in com-
plexity and scale (in terms of e.g., number of learnable parameters and
training data size) at a rapid pace, culminating in the development
of so-called “foundation models” or “large models”. These models,
which are intended to either be directly applicable to problems in a
wide domain space or to be easily generalizable through fine-tuning
and transfer learning, include generative models like large language
models (LLMs, e.g., GPT-3,¹ DeepSeek-r1),² image and video diffusion
models (e.g., DALL-E,³ Stable Diffusion),4 and vision-language models
(VLMs, e.g., LLaVA),5 among other, less common examples. Founda-
tion models have infiltrated nearly every aspect of the digital world,
from standalone applications like the popular chat interface ChatGPT
to digital search, code generation, automated writing, and much more.

The chemical sciences have not been immune to the proliferation
of foundation models. There have been a number of recent efforts
seeking to evaluate the capabilities of generative models like LLMs for
chemical tasks, from answering simple questions6 and mining text7 to
performing complex experiments by interfacing with laboratory hard-
ware.8,9 Efforts to create chemistry-specific foundation models have
also appeared, including protein-folding models10,¹¹ and “universal”
machine-learned interatomic potentials.¹²,¹³

In the recent rush towards ever larger and more general ML
models, comparatively little focus has been placed on the ethics of
these models, though a growing field of “artificial intelligence” or
“AI” ethics has emerged.14–16 Even less attention has been paid to
the ethics of foundation models when applied in scientific domains,
including chemistry. This work aims to fill that gap and initiate a
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conversation about responsible development in applied data science
and scientific ML.

I begin (Section 2) by providing a theoretical and practical basis
for ethical discussion. Drawing from the field of science ethics as well
as from several prominent ethical codes for chemists and chemical
engineers, I distill some basic principles that (should) guide the prac-
tice of chemical science. While I will discuss alternative perspectives,
my discussion favors a deontological ethic. I discuss the general risks
and harms associated with foundation models (Section 3), focusing
on generative models, and then (Section 4) examine how these risks
are largely unacceptable within established scientific and chemical
ethics. In Section 5, with these more general considerations at hand, I
shift focus to examine ethical concerns that are unique to applications
of foundation models in the chemical sciences. Finally (Section 6),
I provide a brief discussion and conclusion. I suggest how some of
the risks and harms mentioned might be mitigated, using analogies
from efforts in other areas of chemistry, and I emphasize the need
for further research into chemical “AI” ethics.

2 A Basis for Chemical Ethics

2.1 The Ideals of the (Chemical) Scientist
There have been many attempts to distill the moral ideals of
science and scientists. For instance, Robert Merton famously laid out
four principles now known as the “Mertonian Norms”:17 communism
(sometimes instead called “communalism”), universalism, disinter-
estedness, and organized skepticism. Mostly, the different sets of
ideals overlap considerably. In the interest of simplicity, I will focus
on the six ideals described by the National Academies of Science,
Engineering, and Medicine in their report Fostering Integrity In
Research:18
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1. Objectivity: the responsibility of a scientist to avoid letting their
personal feelings or beliefs introduce bias into their findings

2. Honesty: a core responsibility which includes both truth-telling and
transparency

3. Openness: a scientist’s responsibility to present all relevant find-
ings without obfuscation

4. Accountability: a scientist’s obligation to be able to explain and
justify their work, and to stand behind what they’ve done

5. Fairness: consistently making judgments based on clear, equitable
criteria

6. Stewardship: an overarching responsibility to maintain relation-
ships within scientific organizations and between scientists and
broader communities

These principles are far from universally accepted, and there is cer-
tainly room for argument and further development. For instance, the
debate around whether or not human beings can ever be objective or
act objectively (and under what conditions) continues.19–²¹ If objectiv-
ity is forever out of reach, it may not make sense as a guiding principle
for human behavior. Other principles are more certainly attainable but
are nonetheless rarely realized in practice. What scientist presents
all of their findings without omission? How often can a researcher
explain and justify every element of every article and project that they
are a part of, particularly in an age when collaborations are becoming
larger²²,²³ and researchers more specialized?24 While these are ques-
tions worth asking, and while the principles enumerated above are
perhaps flawed, for the purposes of this discussion I will act on the
assumption that they are appropriate ideals for (chemical) scientists
and that they are generally worth aspiring to.

It is worth pointing out that the principles of the National Acad-
emies speak to the social element of science. While science is an
epistemology that has been called a pursuit of “reliable knowledge”,25

as a profession and practice, it is also a social activity. Essentially
all practicing scientists “know” or “believe” ideas about the natural
world on the basis of the theories, simulations, and experiments of
other scientists.26 In this way, scientific epistemology and scientific
ethics cannot be disentangled; our knowledge is only as good as
the scientists who we are reading, listening to, and interacting with.
By upholding honesty, we seek to improve the reliability of our knowl-
edge and that of those around us, while stewardship more directly
preserves the social connections which enables science’s decentral-
ized knowledge generation.

In this discussion, I am assuming that, once a set of principles are
agreed upon, all chemical scientists will and should try to follow them.
It is reasonable to challenge this assumption and ask “why should
they”? Clearly, it would be insufficient to draw on legal or professional
punishment. Laws are the morals of the State, not of people, and fear
of retribution, however valid a motivation, is not a moral one. While
the motivations for ethical behavior are outside of the scope of the
present work, I should point out the work of Kovac,26,27 who has invoked
virtue ethics and specifically the virtue of reverence as a possible
answer.

2.2 Chemical Ethics in Practice
One would hope that most practicing scientists agree with the Na-
tional Academies’ principles, the Mertonian Norms, and other ethical
ideals of science, but most scientists have not explicitly agreed to
live and work according to these ideals. On the other hand, scientists,
including chemists and chemical engineers, regularly agree to follow
professional codes of ethics. It is thus perhaps more appropriate to
ground ethical discussions in professional codes, rather than ideals.

Moreover, professional codes of ethics are typically somewhat more
specific in what they require of the members of the profession. Here,
I will discuss practical professional ethics in the form of the American
Chemical Society’s (ACS’s) The Chemical Professional’s Code of Con$
duct,28 the Global Chemists’ Code of Ethics (also developed through
the ACS),29 the American Institute of Chemical Engineers (AIChE)
Code of Ethics,30 and The Hague Ethical Guidelines.³¹ I discuss each
source, focusing on specific text that is most relevant to the present
discussion. After discussing each individual code, I consider where
the codes share common ground and what might be the foundation of
a general professional ethic for chemistry. While the four sources that
I have selected are somewhat diverse in the types of professionals
considered in their rules, they are mostly based on and written from an
American context, which could potentially bias this and the following
discussion.

I note that most chemical codes of ethics, including those dis-
cussed here, do not address what happens when a chemical scientist
violates their agreed-upon norms. In the present work, I am mostly
unconcerned with the repercussions of unethical behavior and wrong-
doing. Taking a deontological perspective, I aim to analyze which
behaviors are ethical or unethical. Rather than motivating ethical
behavior (Section 2.1), I assume that chemical practitioners should
(and will aim to) do what is ethical because it is good, and should
avoid what is unethical because it is not good. I briefly discuss reper-
cussions and regulations later in this work, e.g., in Section 6.

2.2.1 The Chemical Professional’s Code of Con 
duct

The Chemical Professional’s Code of Conduct, which was approved
in its current form in late 2019, is motivated by a desire to “advance
chemical science while striving for the highest standards of scientific
integrity”. While much of the Code is quite general, some specific
standards are listed, including sharing ideas, maintaining accurate
records, and properly distributing credit. Similarly, some specific un-
ethical behaviors are included, e.g., undisclosed conflicts of interest
and plagiarism.

Chemical scientists under the Code are charged with maintaining
public health and safety and “[serving] the public interest”. While non-
human health and safety is not directly listed, there is a separate
clause imploring chemists to strive for environmental sustainability
which “includes continuing to work to develop sustainable products
and processes that protect the health, safety, and prosperity of future
generations”. This means that chemical scientists operating under
ACS’ Code must make ethical decisions considering individuals in the
future under considerable uncertainty.

Aside from a more general clause about respect, which includes
avoiding behaviors like bullying, harassment, and coercion, ACS
specifically instructs its members to “avoid all bias based on race,
gender, age, religion, ethnicity, nationality, sexual orientation, gender
expression, gender identity, presence of disabilities, educational
background, or other personal attributes”. Finally, The Chemical
Professional’s Code of Conduct makes it clear that it is not enough
for an individual chemical professional to behave ethically; rather, one
has a responsibility “to act or intercede where possible to prevent
misconduct”.

2.2.2 Global Chemists’ Code of Ethics
The Global Chemists’ Code of Ethics begins by declaring that chem-
ical scientists should “promote a positive perception and public
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understanding and appreciation of chemistry”. This is not a negative
or harmful idea, but it is curious in that this introductory motivation
has to do with perception, rather than reality. In the framing of the
Global Chemists’ Code of Ethics, it is important that the public per-
ceive chemistry as being positive but not as important that chemistry
actually is positive and beneficial for that same public.

Environmental concerns are central to the Global Chemists’ Code
of Ethics, with a full section titled “Environment” immediately follow-
ing the introduction. Under this code, chemical practitioners should
work to make sustainability central in research and in education and
should protect the environment for the wellbeing of those who come in
the future. This call for environmentalism is not only individual; global
chemists are called upon to make their organizations sustainable and
promote public understanding of the environment and sustainability.

The Global Chemists’ Code of Ethics section on “Research”
emphasizes that chemistry is and should be a public service, that
“Research in the chemical sciences should benefit humankind and
improve quality of life”. This central drive for public benefit calls back
to the earlier environmental statements and includes future genera-
tions in the definition of “humankind”. Transparency and avoiding
conflicts of interest are highlighted, as is the somewhat vague order
to “practice collegiality in the best way”.

In “Scientific Writing and Publishing”, openness, honesty, integrity,
reproducibility, and correctness are all mentioned as centering prin-
ciples. Chemists have a personal responsibility and a responsibility
for those they supervise to ensure that there are no errors in published
work, to avoid plagiarism, and to “promote peaceful, beneficial appli-
cations and uses of science and technology through a variety of
media”.

Finally, chemical scientists have obligations to ensure safety and
security, with the latter including minimizing possible dual use risk.

2.2.3 AIChE Code of Ethics
The core requirement for chemical engineers, according to AIChE,
is to “uphold and advance the integrity, honor and dignity of the
engineering profession”. Like the Global Chemists’ Code of Ethics,
this seems to emphasize public perception and social acceptability
as opposed to making positive change in the world. Nonetheless,
within this call for integrity and honor are some additional charges,
specifically “being honest and impartial and serving with fidelity their
employers, their clients, and the public; striving to increase the com-
petence and prestige of the engineering profession; and using their
knowledge and skill for the enhancement of human welfare”. Notably,
employers are listed before clients and the public, perhaps implying
that, when in conflict, one’s responsibility to an employer comes
first. This is deeply problematic given the history of intentional and
unintentional chemical disasters driven by government and corporate
interests,³²–36 but I digress.

While the environment is not mentioned in AIChE’s main ethical
goals, environmental protection is mentioned along with protecting
public welfare in a subsequent clause. Chemical engineers must also
accept responsibility and actively seek out critiques of their work,
avoid working in areas outside of their competence, and be fair and
respectful. In the vein of respect, there are separate and specific
clauses in the AIChE Code of Ethics stating that chemical engineers
should promote diversity, equity, and inclusion and “never tolerate
harassment”.

2.2.4 The Hague Ethical Guidelines
The Hague Ethical Guidelines were written not for a particular pro-
fessional body but rather to support the 1993 Chemical Weapons
Convention,37 an international agreement binding 193 countries. It is
a truly global collection of norms rooted in an understanding of the
immense danger and destructive power of chemistry when practiced
unethically. Chemical weapons and the deaths that chemistry can
bring are central to the Hague Guidelines, which reiterate the agree-
ment not to “develop, produce, otherwise acquire, stockpile or retain
chemical weapons”, among others. At the same time, the authors
argue that, behaving ethically as described by the Hague Guidelines
will “[ensure] high quality results in science”.

The Hague Guidelines inextricably link ethics, public benefit,
and environmental protection, stating, “The responsible practice of
chemistry improves the quality of life of humankind and the environ-
ment”. Environmental protection is further emphasized, and under
these guidelines, promoting sustainability is a “special responsibility”,
requiring practitioners to “[meet] the needs of the present without
compromising the ability of future generations to meet their own
needs”.

Chemical practitioners, including chemistry teachers, should pro-
mote beneficial (i.e., peaceful) applications of science and technology
while preventing the misuse of existing technologies and the research
and development of new harmful technologies. Preventing harm in-
cludes promoting safety and ensuring security, e.g., preventing theft
and harmful or destructive applications of chemical supplies.

2.2.5 Synthesizing Professional Chemical Ethics
While there are some significant and some more subtle differences
between the four codes studied, they concur on many of the respon-
sibilities of chemical scientists. With broad agreement, chemists,
chemical engineers, and other chemical practitioners should:
1. Work to ensure the wellbeing of current populations, future gener-

ations of humans, and the environment;
2. Share ideas openly while attributing ideas appropriately;
3. Avoid a set of intrinsically harmful activities, including plagiarism,

harassment, dishonesty, misusing technology, and developing
technologies with destructive applications;

4. Increase knowledge, both within the scientific community and in
the general public, by speaking truthfully and accurately;

5. Protect health, safety, and security, broadly defined.

Several codes emphasize that chemists should not only meet these
obligations as individuals but should drive other individuals and com-
munities to also behave ethically.

The responsibilities listed here are compatible with and extend
the general principles outlined in Section 2.1. While there are certainly
other requirements for ethical practice of (chemical) science not
listed, if one follows these guidelines, one does not risk going against
any foundational ideals.

2.3 Considering Chemical Utilitarianism
It is worth taking a brief detour at this point to consider alternative
ethical schools of thought. Many of the ideas discussed in Section 2.2
are concerned with particular outcomes, such as the development
of chemical weapons (dangerous and likely to lead to mass death)
or an increase in the prestige of chemical engineering as a field
(potentially beneficial to science). It is therefore attractive to apply a
consequentialist or utilitarian ethic.38 I note that these areas of ethics
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are diverse and not always in agreement, and for reasons of space
and simplicity I will refrain from an in-depth analysis. At the risk of
generalizing, a consequentialist might say something like, “If the net
benefit is positive (i.e., more benefits comes out of the action than
harms), then the action is morally acceptable”. However, consequen-
tialist and utilitarian views are particularly ill-suited for application in
the field of chemistry.

A general problem with consequentialist and utilitarian ethics is
measurement. To know if an action is good or just as a consequen-
tialist, one must wait to see what happens after the action. But when
does one stop “counting” benefits and harms? How widely must one
consider impacts? The problem of measurement is particularly thorny
in chemistry, where practitioners often do not immediately know how
a new compound, material, or process could affect human or environ-
mental wellbeing and where negative impacts are often obscured, e.g.,
by chemical manufacturers.39 In research contexts, there is perhaps
even greater uncertainty about impacts. A researcher could argue that
their work will improve sustainability (i.e., it will have a positive net
effect) as a way to justify ethically questionable behavior, but what
happens if the researcher’s ideas don’t work out, if their experiments
fail? Even worse, what if some results, though initially intended to
benefit humankind, are used to a nefarious end? In such cases, an
expected net benefit becomes a net harm.

Another problem with consequentialism and utilitarianism con-
cerns the distribution of impacts. Most utilitarian frameworks aim
to maximize wellbeing in a global sense.40 A global optimum (if
such a thing could be identified), or the point which creates “the
greatest amount of good for the greatest number”, could include
severe suffering in certain populations but still be considered moral
and worth pursuing. This is dangerous when one considers that
chemistry’s benefits tend to be diffuse, while its negative impacts
are often concentrated.41 Industrial facilities such as combustion-
based power plants and chemical factories are frequently located
near marginalized communities,42 (e.g., in the United States, they are
more often located near Black and other racialized communities).43

While the chemicals produced may help millions of people, the local
impacts are often starkly different, with proximity to certain types of
facilities being correlated with negative health outcomes.44 Such a
disparate outcome would directly go against the principles laid out
in Section  2.1, including fairness and stewardship, and subjecting
marginalized communities to disproportionate harm is inherently
immoral outside of any chemistry-specific considerations.

For these reasons, chemical scientists must resist the urge to fall
back on consequentialist and utilitarian arguments, either directly
or in arguments based on related concepts like “net good”. In the
remainder of this piece, I will refrain from such positions, grounding
my arguments in moral ideals, rules, and responsibilities.

3 Ethical Risks and Harms of Foundation Models
In this section, I consider foundation models designed for general
public use, mainly generative models like LLMs, VLMs, and diffusion
models. I assume that the person using such models may or may not
be a (chemical) scientist but that the application is not specialized to
chemistry. Risks that are heightened in chemical applications or are
unique to chemistry are discussed in Section 5 below.

3.1 Hegemonic Values and Prejudices
Generative foundation models like LLMs, VLMs, and diffusion models
are trained on human-generated media, introducing human biases.

Alarmingly, it has been well documented that LLMs and diffusion
models reproduce harmful prejudices and stereotypes, including
sexism,45,46 racism,47,48 ableism,49,50 anti-LGBTQIA+ prejudice,51–53 and
more,54 reflecting hegemonic positions. Though VLMs have been
developed and deployed more recently, it appears that hegemonic
biases are present in these models as well.55,56 For instance, VLMs
produce starkly different responses to the same prompt based on
the perceived gender and/or race of the people depicted in provided
images.57,58

Several techniques have been identified to mitigate foundation
model prejudice, including direct preference modeling,59,60 but model
bias remains a persistent challenge. Human preferences provide
limited protection against prejudice. Indeed, human evaluators often
cannot even agree on what statements are harmful,61 introducing
significant noise. Even if evaluators were in perfect agreement, model
bias is not always overt. LLMs can produce prejudicial responses
with ostensibly non-prejudicial explanations,62 making the task of
even identifying social biases challenging. Concept editing,63 a recent
development in which foundation models are selectively altered to
remove harmful associations, is perhaps a more promising direction
for bias mitigation, and further investigation in that direction should
be conducted.

3.2 Plagiarism and Privacy
While the complete training corpora of many foundation models
are unreported, it has been shown that LLMs repeat published mate-
rials verbatim without attribution.64,65 The legal status of foundation
models is still in question, and it is possible that courts will not
interpret foundation model repetition as copyright infringement. Re-
gardless, reproducing text without attribution constitutes plagiarism
in academic contexts. The ethical question for chemical ethics is: are
individuals responsible for plagiarizing text via foundation model if
they were unaware that the text is plagiarized?

LLMs provide a convenient excuse for unscrupulous researchers
and writers, who can claim that they did not know or even that they
could not know that their text was plagiarized. At the same time,
conventional publication ethics would suggest that even an ignorant
author is morally in the wrong. LLMs and other foundation models lack
agency and complete tasks only in response to user instructions. If we
treat foundation models as tools, then a writer is obviously respon-
sible for their tool use. Regardless of whether LLMs are considered
as agents or tools, all authors of a publication are responsible for the
text.66,67 Even a writer who did not themselves use an LLM is ethically
responsible if some of their text is plagiarized.

In the most egregious cases, LLMs do not only repeat another
author’s words but “leak” private information contained in e.g.,
training data.68 Like efforts to reduce bias, research into improv-
ing privacy protections and mitigating leaking have shown limited
success;69 careful attack strategies can even overcome model “hallu-
cination” (see Section 3.5) and tendency to “catastrophically forget”
training data to extract target private information.70 For those who
have an ethical responsibility to maintain privacy, foundation model
use with e.g., medical, genetic, or patent data is highly suspect.

3.3 Environmental and Resource Considerations
The energy and water required to train and use LLMs are immense.
The increased use of graphics processing units (GPUs) for ML model
training and inference has directly been implicated in rapidly increas-
ing energy consumption by data centers. In the just five years between
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2018 to 2023 (a time period that notably saw the development
and widespread use of generative foundation models like ChatGPT),
the portion of United States energy consumption attributed to data
centers increased from 1.9% to 4.4%.71

In addition to straining electrical grids, foundation models sig-
nificantly contribute to greenhouse gas emissions and, thus, anthro-
pogenic climate change. In principle, the energy to power data
centers could be provided by renewable sources, but in practice this
is not often the case, and many data centers rely on fossil fuels for
power.72 In the recent explosion of interest in “AI”, many companies
in the data and tech sectors are actually becoming less sustainable
in terms of greenhouse gas emissions.73

It is difficult to precisely estimate the environmental and climate
impact of foundation models, and making such an estimate is outside
of the scope of this work. Though exact figures will vary, training a
single model can easily release dozens of tons of carbon dioxide
into the atmosphere,74 and this is only a small part of the model’s
impact. Foundation model training is a fixed cost that takes place only
once or perhaps a handful of times (depending on hyperparameter
tuning), while the costs of fine-tuning and model inference are ever
increasing.75 ChatGPT alone receives billions of visits per month and
responds to roughly 10,000,000 user queries daily,76 providing a
sense of the scale of this add-on cost.

Even if foundation models like ChatGPT were powered entirely by
renewable energy, model water consumption is unsustainable. While
the exact water consumption required to train and employ foundation
models is not reported by “AI” companies like OpenAI, Anthropic,
and Microsoft, Li et al.77 note that data centers currently evaporate
quantities of water that are comparable to the amounts used in the
beverage industry, and, just as with energy, data center water usage
is accelerating.78 Though perhaps obvious, it bears mentioning that
while beverages sustain life, data centers do not in any way directly
promote human wellbeing. Placing foundation models within this
broader context, Li et al. estimate that training a single GPT-3 model
(a relatively small foundation model at the time of this writing) can
consume 700,000 liters of water and that the same model conserv-
atively requires on the order of one liter of water per 20-100 queries.

It is comforting for a chemical practitioner (particularly one
concerned with sustainability) to take the long view. It has been sug-
gested that foundation models could dramatically accelerate human
progress, including in science.79,80 Yes, right now foundation models
are (somewhat literally) bleeding the Earth dry, and yes, they’re wors-
ening the ongoing climate catastrophe, but what if these models
eventually lead to breakthroughs in climate technologies and sustain-
able energy? What if the current environmental harms are a necessary
cost for a one-day utopia?

This argument falls into one of the traps of consequentialism that
I outlined in Section 2.3 (i.e., the problem of measurement), but as
this is a particularly common line of reasoning, it deserves a direct
refutation.

The hope that the deaths and destruction that “AI” is causing
today may lead to a better future is a dangerous one. The future
that this hope rests on is dubious at best, depending on the develop-
ment of scientific breakthroughs (in particular, breakthroughs brought
about by foundation models that could not be discovered at an
acceptable rate without foundation models) and new technologies as
well as massive changes in energy production. On the other hand,
climate change, drought, famine, and other associated disasters are
definite, existing now with as much certainty as empirical science

allows.81,82 Climate change and environmental degradation are exis-
tential threats to human society and entire ecosystems, and it is
irresponsible and morally unacceptable to reserve judgment on envi-
ronmental sustainability in the face of such severe risk.

3.4 Labor
There has been considerable discussion both in the scientific liter-
ature and in the popular press concerning the effect of foundation
models and “AI” on labor. Most of this discussion centers on the
question, “Will ‘AI’ take jobs away from humans”?

Foundation models remain a relatively new development in ma-
chine learning, and the full impact of these models on society has yet
to be seen. Preliminary data suggests that there is real risk to human
labor, which under Capitalism amounts to a risk to human security and
wellbeing. Hui et al. found that generative models such as ChatGPT
and Midjourney cause the employment and economic wellbeing of
freelance workers to suffer.83 Skilled freelancers who produce high-
quality work consistently appear to be disproportionately affected,
undermining any argument that “AI” will only affect “unskilled” labor.
Through a literature meta-analysis, Zarifhonarvar84 found that roughly
two-thirds of occupations will be affected by LLMs like ChatGPT (other
foundation models were not considered in the analysis). Zarifhonarvar
suggests that roughly one-third of occupations face “full impact” from
LLMs, meaning that all tasks and skills involved in the occupation
can be automated. These “full impact” occupations face mass job
loss. While Guliyev takes a contrary view,85 using an analysis of 24
developed countries to suggest that “AI” increases employment and
worker wellbeing, his analysis concludes in 2021, early in the current
explosion of foundation models, and therefore may no longer apply.

Foundation model development presents its own troubling labor
ethics. Training a model on the scale of a modern LLM or generative
diffusion model is challenging, involving data collection, data clean-
ing, and model testing and fine-tuning, and labor abuses happen
throughout this process.

It can be inferred from the models’ ability to plagiarize (Sec-
tion 3.2) that works under copyright are included in model training.
Artists, writers, and other human creators whose work is incorporated
into foundation models are uncompensated. Thus foundation models
represent theft of intellectual property, labor (particularly creative,
artistic, and intellectual labor), and wages/compensation on an un-
precedented scale.

To avoid producing undesirable and illegal material (e.g., hate
speech or images depicting child pornography), foundation model
datasets are cleansed of offending materials. The labor of labeling
offending materials, along with model testing, is often conducted by
underpaid workers in the Global South.86 The conditions that these
workers face has been described as exploitative,87 and even if the
workers were treated and compensated fairly, the work of weeding
out some of the worst content that humanity has created is inherently
traumatizing. While some may see generative foundation models and
“AI” as bringing about a future where humans no longer need to work,
this dream ignores the widespread damage that the same models are
producing for human workers today.

3.5 Epistemological Risk
Foundation models, particularly LLMs, VLMs, and related generative
methods, challenge the very notion of truth. Whereas it has long
been said that “seeing is believing”, now it is possible, even easy,
to generate as much text as one wants about any topic and to gen-
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erate photorealistic images and videos depicting events that never
happened. “Deepfake” images and videos88 depicting real people can
damage individual reputations89 and manipulate public opinion.90,91

LLMs can generate outputs that is increasingly difficult to distinguish
from human-generated text.92,93 On a societal level, foundation mod-
els represent serious threats to how we make sense of the world and
form our beliefs.

Over the last several years, an enormous effort has been put into
reducing erroneous output from LLMs (so-called “hallucination”).94–96

The basic premise is that, with enough data, fine-tuning, and specific
instructions, LLMs will cease contributing to misinformation, and
users seeking to use LLMs to produce technically accurate text will
be able to do so without worry. Even if erroneous LLM output has de-
creased over time, this project will always necessarily be incomplete.
LLMs are stochastic text generators;97,98 they are trained (and, barring
a dramatic change in model architecture and training approach, will
continue to be trained) to produce statistically likely text. Given that
human beings, who produced the vast majority of training data for
LLMs and related models, are frequently wrong and frequently lie
using natural language, a statistically likely response is not and can
never be guaranteed to be accurate.

It is not accurate to say that LLMs lie (which would imply that they
know the truth and choose to say otherwise) or that they hallucinate
(which would imply knowing the truth but somehow being deceived by
an altered “mental” state to produce erroneous data). Rather, to use
the philosophical term of Frankfurt,99 they bullshit.100 On a basic level,
they have no concern for truth and whether their outputs are true or
false, and thus they are harmful to truth-seeking enterprises.

But what of those who seek to intentionally deceive through deep-
fakes and generative, human-like text? There have been two major
approaches to address this risk. A number of adversarial ML models
have been trained to distinguish between foundation model-gener-
ated and human-generated/real media.101,102 Outside of data-driven
methods, there have been a number of guides published in the
popular and scientific press attempting to train human consumers
of media to distinguish real from model-generated images and
videos.103,104 Both approaches seem promising, though as foundation
model capacity increases, it is difficult to see a resolution to this
challenge of distinguishing reality from stochastic fiction. Rather, it
is likely that the arms race between generative model developers and
truth-seeking individuals will continue.

The epistemological risks and harms associated with foundation
models are an existential threat to science. How can one trust another
scientist’s article or book if they do not know if that scientist actually
wrote it or if an LLM generated the text? How can one trust an image
that could easily have been generated by the authors to tell a conve-
nient or desirable narrative? Note that this line of inquiry does not
require one to assume that any researcher intends to harm others.
It only requires that researchers be willing to cut corners to publish,
which, given increasing demands to “publish or perish”105,106 in an
increasingly tight academic job market,107 is plausible.

If the mutual trust that undergirds scientific inquiry is disrupted,
then “every researcher for themselves” could become the norm,
with more and more time being spent trying to verify claims rather
than using established studies to move one’s own research forward.
Indeed, in the most extreme (though unlikely) case of widespread
distrust, science could cease altogether to be a community effort if
researchers feel that they could more effectively produce more solid
results in isolation than by consulting a fundamentally flawed liter-
ature.

Finally, while my analysis here has been mainly structural, focusing
on knowledge on a community and societal level, it is important not
to ignore the risk of foundation models on individual knowledge. A
recent study found that those who place confidence in generative
“AI” tools like LLMs engage in less critical thinking overall.108 The
authors also found that the use foundation models resulted in a per-
ceived qualitative change in how critical thinking is used; in terms of
Bloom’s taxonomy, comprehension (i.e., knowledge organization and
summarizing) and synthesis (i.e., generating new ideas by combining
different concepts, or devising new meanings and interpretations) are
most negatively impacted by foundation model use, while evaluation
(i.e., judging information) was least negatively impacted. This study is
limited, for instance because it relies entirely on self-reported survey
data, but it nonetheless points to the chilling idea that many are
treating statistical models as a principal source of knowledge and not
their own minds.

4 Squaring Foundation Models with Chemical
Ethics

Chemical scientists are already using generative foundation models
in research contexts, and doubtless, these include non-chemistry-
specific applications (e.g., image generation, brainstorming, or code
generation). But can this general foundation model use align with the
ideals listed in Section 2.1 and the practical guidelines discussed in
Section 2.2? That is, it is ethical for chemical scientists to lean on
foundation models? In this section, I consider general-purpose appli-
cations of foundation models and associated ethical challenges, as
discussed in Section 3; specific ethical conflicts related to chemical
applications will be explored in Section 5 below.

4.1 Failing Science’s Ideals
The epistemological risks of foundation models are likely to lead to
violations of several scientific ideals. As bullshit engines, foundation
models have no notion of truth and frequently produce flawed or
untrue outputs. If researchers using these models are not careful, they
could develop flawed text or code and communicate falsehoods, ulti-
mately undermining trust in scientific communications and thereby
weakening scientific relationships and hampering scientific steward-
ship. It is also possible that researchers could use foundation models
to avoid accountability, using excuses along the lines of, “It wasn’t
me, it was the machine!” At least within the context of scientific pub-
lishing, accountability diffusion does not seem like a serious problem,
as a number of journals and publishers have already provided ethical
guidance reaffirming that authors must remain individually and col-
lectively accountable.109,110 As long as publication outlets consistently
apply and enforce their guidelines, adherence to the ideal of account-
ability can be maintained.

The ideals of science are even more fundamentally incompatible
with foundation models in light of the models’ embedded prejudices.
While computational and data-driven models are often praised for
their objectivity,¹¹¹ foundation models are informed by human subjec-
tive biases and reproduce them in a range of tasks. The preferential,
prejudicial behavior of many foundation models is also tautologically
unfair and unjust.

Even aside from the epistemological damage that foundation
models can cause as bullshit engines, foundation models risk the
ideal of stewardship. By repeating ideas without appropriate attribu-
tion, foundation models can damage relationships within the scien-
tific community, erasing researchers’ contributions and implicitly
eliminating them from scientific conversations. Relations (especially
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between scientists and the broader human community) are strained
by the toxic labor relations baked into foundation model development
and implementation, and foundation models are further worsening
land relations through their unsustainable energy and water consump-
tion.

Overall, it is difficult to imagine a consistent argument that
foundation models are aligned with science’s stated ideals. In fact,
from this non-exhaustive analysis, it appears that the only ideal that
is not obviously violated or threatened by the development and/or
application of LLMs, VLMs, and diffusion-based image generators is
openness. Even that principle can only be maintained provided that
individuals explain transparently how they have used the foundation
models.

4.2 Violating Professional Chemical Ethics
The practical chemist might roll their eyes at the preceding discus-
sion. This would be fair. Even within this work (Section  2.1), I
acknowledge that scientists rarely if ever live and work perfectly in
line with their ideals. While it is deeply troubling in just how many
ways and to what extent foundation models challenge science’s ideals,
it is hardly surprising that they are not in full alignment. However,
foundation models are just as poorly aligned with the expectations
of the chemical profession, which should discomfort even the least
idealistic chemist.

At present, foundation models are causing active harm to the
environment, and given the increasingly catastrophic effects of an-
thropogenic climate change and global warming, this also threatens
the wellbeing of future generations. As discussed in Section 3.3, the
environmental degradation associated with foundation models is a
black mark against them, even if they are used towards ostensibly
sustainable, environmentally benign, or beneficial ends.

In that foundation models serve to accelerate anthropogenic
climate change, they are indirectly implicated in associated climate
catastrophes that threaten human and non-human health, safety, and
wellbeing. The chemists’ duty to protect security is also compromised
by foundation models’ proclivity towards repeating sensitive informa-
tion.

Most damningly, foundation models such as LLMs, VLMs, and gen-
erative image and video diffusion models go against many central and
specific intellectual norms of chemical practice. Whereas chemical
scientists are urged to share ideas with appropriate attribution while
avoiding plagiarism, LLMs function as plagiarism machines. Chemists
are required to be honest and increase knowledge, but foundation
models produce information without care towards truth, spreading
misinformation.

The implications of this analysis are clear: uncritical development,
promotion, and use of the types of foundation models discussed
above put chemical scientists at odds with their professional oblig-
ations. It could even be said that use of LLMs, VLMs, and related
general-purpose foundation models inherently constitutes a misuse
of the underlying technologies (e.g., statistical learning, transformer
architectures, and/or reinforcement learning), further deepening the
betrayal of professional duties.

5 Chemical Foundation Model Use
The purpose of this section is not to review either the uses of genera-
tive foundation models in the chemical sciences or chemistry-specific
foundation models. A number of thorough reviews on both topics have
already appeared in the literature.¹¹²–116 Rather, I will briefly and non-

exhaustively survey different areas where these models can be used,
in doing so addressing potential ethical problems and how they align
or fail to align with scientific and chemical ethics.

5.1 Chemical Applications of Generative Models
I wish to begin by emphasizing that any use of a generative model will
face many ethical problems, as outlined above. It is presently impossi-
ble to completely avoid unsustainable model water and energy usage
(assuming that individuals have no control over how a data center is
operated), the abuses of labor inherent in model development, and the
epistemological risks of bullshitting models, among other problems.
With these risks taken as a given, I will in this section emphasize
unique risks and harms that arise when generative models are used
in the chemical sciences and emphasize areas where certain general
risks are particularly dangerous or likely to play a role. I note that this
section will primarily focus on LLMs, as these have been most widely
used in the chemical literature.

5.1.1 Literature Review and Text Generation
Many chemistry-specific applications of generative foundation mod-
els share significant similarities with applications in other areas.
For instance, there has been considerable interest into using LLMs
for chemical information retrieval and question-answering tasks.117

LLMs appear to be particularly useful in generating structured data
from unstructured text,7,118 which is beneficial in e.g., constructing
databases of synthesis recipes. Alone, LLMs are not particularly well
equipped to answer complex questions, particularly when calculations
are required, but models that can generate and execute code through
external tools are considerably more effective.6

Naturally, information extraction and generation are domains
where epistemological risk is high. While providing LLM “agents” with
external tools decreases the likelihood of erroneous model outputs,
so-called “hallucinations” cannot be entirely avoided, meaning that
the data and/or answers generated by LLMs and other generative
models are potentially flawed.

Tasks which rely on an LLM “interpreting” text and generating
unstructured or structured responses are also open to model biases.
Consider that much work in chemical research and the chemical
industries relates directly to humans, including biochemistry, drug
design, and other areas of medicinal chemistry. Omiye et al.119 have
shown that LLMs promote inaccurate and harmful race-based ideas
related to medical practice. Similarly, Yuzhe Yang et al.57 found con-
siderable bias in VLM analysis of medical images, with foundation
models diagnosing marginalized groups at a lower rate than their
majority counterparts. Yang’s study also highlighted the effect of inter-
sectionality, with multiply marginalized individuals (e.g., Black women)
receiving even worse results. While further research in this area must
be conducted, it is plausible that prejudice may similarly color foun-
dation model-based inquiries into a wide range of biochemical and
medical domains where human markers like gender, sex, and race are
salient. If the summaries and answers generated by LLMs are racist
and sexist, they could damage the integrity and (further) undermine
the objectivity of the scientific work while also potentially having real
negative impacts on human beings.

Additional risks arise when LLMs are used for text that will be
published or shared. The use of LLMs in scientific writing has rapidly
increased in recent years,120 and there are some reported cases of
LLMs being used in peer-review reports.¹²¹,¹²² While there may be
legitimate use cases for LLMs in these areas of scientific writing (ig-
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noring issues like plagiarism and copyright for the moment), such as
correcting grammar and improving clarity or conciseness, LLMs could
produce erroneous or misleading statements or provide non-existent
citations. LLMs used for peer review could produce unreasonable
arguments that ultimately result in the wrongful rejection of a scientif-
ically sound manuscript. As noted in Section 4.1, many journals at least
require open disclosure of generative model use, which allows critical
readers to closely and skeptically examine a piece of LLM-generated
text. Still, the epistemological risks of LLMs for the scientific literature
have not been fully reckoned with.

5.1.2 Laboratory Automation
As part of a growing movement towards automated high-throughput
experiments and “self-driving laboratories”,¹²³,124 generative founda-
tion models (especially LLMs) have been used to direct complex
chemical processes. To accomplish this, an LLM is given access to an
applications programming interface (API) for a laboratory automation
system, which could control an individual robot or other instrument
or could send instructions to an existing automated laboratory. Thus
far, this approach has been demonstrated on well-studied systems.
Boiko et al.8 applied their LLM-based laboratory automation system,
Coscientist, to optimize Suzuki and Sonogashira cross-coupling re-
actions, while Bran et al.‘s ChemCrow125 demonstrated the ability to
synthesize non-trivial products such as N,N-Diethyl-meta-toluamide
(DEET). In the area of optimization, LLM-based approaches appear to
be competitive with the more traditional Bayesian optimization. It is
unclear how models like ChemCrow and Coscientist, which in addition
to laboratory APIs can access the chemical literature through the
Internet, will be able to generate and execute experimental plans to
study truly novel chemical or materials systems for which no literature
recipes exist.

Granting an LLM control of physical laboratory tools generates
many novel ethical concerns. Boiko et al. found that LLMs such as
GPT-4 could be directed to synthesize compounds that are danger-
ous or illegal if given an appropriate prompt, bypassing the model’s
“guard rails”. This example poses LLMs as dual-use technologies: just
as they could be used to perform experiments for benign, socially
beneficial chemical research, they can also be leveraged by bad
actors, considerably lowering the barrier to entry for illicit drug or
chemical weapons manufacturing. While this does not make LLM use
unethical per se, it makes adherence to the chemist’s duty to avoid
developing destructive technologies more challenging.

Laboratory safety is another pressing concern. An LLM cannot be
trained to follow safety procedures as a human can, nor can an LLM
be held accountable for unsafe behavior. Unless a human is closely
monitoring the model’s actions (and, in doing so, somewhat defeating
the purpose of laboratory automation), the safety of humans in the
laboratory and of the experimental equipment cannot be guaranteed.

5.1.3 Classification and Regression Tasks
Many recent efforts have considered if general-purpose foundation
models can act as substitutes for specialized chemical and materials
ML models. The idea is simple: if, by being trained on a huge corpus
including the open literature, an LLM or similar model has some un-
derlying “understanding” (representation) of chemistry, then it should
be possible to fine-tune these models to make arbitrary predictions
about chemical entities. It appears that LLMs are able to compete
and in some cases even exceed small, single-purpose ML models
when available data are scarce.126 In particular, LLMs seem to excel at
classification and struggle somewhat more on regression and gener-

ation tasks.117 When ample data are available, however, LLMs do not
provide significant benefits. This presents researchers with a choice:
they can either generate additional data to train a bespoke model,
which might be time-consuming or costly, or they can rely on an LLM,
with all of its thorns and pitfalls.

5.1.4 Education
Some groups have advocated for using LLMs in educational settings,
serving as individualized “tutors” that can assist students in the
classroom.127,128 They argue that LLMs provide a “scalable” solution
to meet individual student needs and improve education in various
areas, from providing lectures and guiding student labs to evaluating
students.

LLM-based chemical education is harmful to students and to
broader safety. Students may come to believe falsehoods constructed
by their “tutors” or may learn correct information without understand-
ing the underlying mechanisms and logic. Students could also come
to rely on LLMs, reducing their ability to think critically and preventing
them from developing useful cognitive skills, e.g., chemical intuition.
LLMs directing laboratories introduce risks to health and safety, as
discussed in Section 5.1.2, but in an educational setting this risk is
considerably greater. Students do not necessarily understand labo-
ratory safety; indeed, teaching safety skills is a core goal of any
laboratory course. Therefore, they cannot effectively act to monitor
the safety of LLM instructions. Finally, it should go without saying that
having a prejudicial “tutor” is harmful to an educational experience,
especially for minoritized or marginalized students. As even some of
the authors advocating for LLM-based chemical education realize,128

LLMs cannot completely avoid prejudice, and model bias is likely to
influence any LLM-generated educational materials.

5.2 Chemical Foundation Models
The term “foundation model” is somewhat imprecise, and the line
between a conventional ML model and a foundation model is blurry.
There is no exact number of training data or parameters past which
a model becomes foundational. Keeping this in mind, a number
so-called chemical foundation models have been developed and
reported recently.

Perhaps the most famous family of foundation models are protein
models, which won part of the Nobel Prize in Chemistry in 2024.129

Given a string of amino acids, these models generate folded protein
structures, thus addressing one of the greatest challenges of biology
and biochemistry. In some cases, protein model architectures resem-
ble LLMs. These “protein language models”116,130 treat amino acids
as tokens and protein sequences as text. Other models, including
the AlphaFold family10,¹³¹ and RoseTTAFold,¹¹ rely on other advanced
ML techniques, such as equivariant transformers¹³² and diffusion
layers.¹³³

Several research groups have developed so-called “universal”
machine learning interatomic potentials (MLIPs).¹²,¹³,134 By training on
data spanning the periodic table, these models can be employed to
simulate diverse chemical systems, including some very far outside of
the training distribution. For instance, the MACE-MP-0 MLIP,¹³ which
was trained exclusively on bulk crystalline solids from the Materials
Project,135 was shown to behave well (at least qualitatively) on systems
ranging from gas-phase hydrogen combustion to liquid electrolytes
and many systems in between.

Finally, there have been a handful of chemical foundation models
that do not address single problems like protein folding or atomistic
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energetics and dynamics. Similar to a protein language model, Cai et
al. created ChemFM,136 a foundation model trained on molecules rep-
resented as Simplified Molecular Input Line Entry System (SMILES)
strings for molecular generation and property prediction tasks. Aim-
ing to tackle the somewhat more narrow domain of reactor modeling,
Wang and Wu recently designed a foundation model that combines
meta-learning with physics-informed fine tuning to accurately simu-
late multiple classes of reactors.137

These innately chemical foundation models avoid a number of the
ethical problems of general-purpose generative foundation models.
While human bias will always in some way inform model datasets,
these biases are less directly connected to systems of oppression,
and, for instance, a “universal” MLIP cannot generate racist, sexist,
or otherwise prejudiced output. These models are often trained on
open data, such as the structures deposited in the Protein DataBank
(PDB) or calculated through the Materials Project database, and so the
labor ethics of chemical foundation models are more sound. These
data sources additionally do not introduce risks related to privacy or
plagiarism; though a protein model could, conceivably, exactly repro-
duce a previously reported protein structure, this does not necessarily
amount to plagiarism. If the structure used is in the public domain, as
is the case for all data deposited in the PDB, then reproduction is valid
unless a researcher claimed to have discovered that exact structure
without proper attribution.

The main ethical issue that these chemical foundation models
introduce relates to resource use. Though universal potentials, protein
models, and their ilk are small in comparison to generative foundation
models, they are large by the standards of (bio)chemistry and likely
contribute more to environmental degradation and climate change
than an average ML model in the chemical sciences, considering
that general-purpose models often have higher energy demands than
specialized models.138,139

6 Discussion

6.1 Addressing the Harms of Foundation Models
Generative foundation models are, in many ways, at odds with
scientific ethics generally and the professional ethics of chemistry,
chemical engineering, and related fields more specifically. Chemistry-
specific foundation models such as “universal” MLIPs and protein
models are less morally compromised but still introduce some ethical
risk and harm. Considering the diverse concerns laid out above, I
ask a simple and necessary question: should chemical scientists be
using or supporting the use of foundation models? The appropriate
response hinges on the extent to which the model in question is
necessary for a particular task.

Consider how chemical scientists address problematic tools in
other contexts. After all, ethically pure chemical research and practice
is rare, and one can easily generate a list of such problematic tools. To
name just a couple of examples of problematic chemical substances:
• A number of commonly used solvents are known to be highly

harmful to human health and the environment;140

• Plastics, which degrade human health and the environment,141,142

are ubiquitous in our laboratories and are a major product of the
chemical industry;

• Cobalt, a key component in modern lithium-ion batteries, is linked
with (alleged) human rights and labor abuses in the Democratic
Republic of the Congo.143,144

In response to the clear harm that that these substances caused,
the chemical community shifted in a number of significant ways. For
harmful solvents and for cobalt, researchers have sought ways to re-
duce the amount needed or avoid these materials altogether, leading
to the explosion of interest into so-called “green solvents”145,146 and
Co-free battery electrodes.147,148 While the original materials are still
used (e.g., Co-based Li-ion batteries remain on the market and an
area of research interest), the chemical community is largely moving
towards elimination. There is also some interest in minimizing the use
of plastics,149 but there has been a greater emphasis on developing
alternative chemistries that are environmentally benign150,151 or iden-
tifying methods to circularly recycle plastics,152,153 thereby reducing or
eliminating the harm caused by their waste.

By analogy, once we as a community identify foundation models
(particularly generative foundation models) as harmful or ethically un-
acceptable, we can seek to minimize their use. We should be asking,
“Where are LLMs, VLMs, etc. offering truly unique, necessary bene-
fits?” and eliminating any non-“essential” uses. This would mean, for
instance, refusing to use LLMs for knowledge retrieval, writing, or code
generation, all of which can be accomplished effectively (perhaps
even more effectively) without the foundation models. For areas where
foundation models are presently necessary, such as protein folding,
researchers should seek to develop alternatives that are less harmful
and/or seek out ways to substantively reduce harm. I note that, while
these changes can be enacted by individual chemical practitioners,
they will be more effective if implemented structurally, whether at the
level of universities and other research bodies, chemical professional
societies, or policy-makers.

6.2 A Turning Point for the Chemical Sciences
I have argued throughout this piece that, if a new technology and
established ethics are at odds, then the technology should not be
used, or steps should be taken to minimize the harm done by that
technology. An idea central to my analysis but unspoken up to this
point is that ethical norms should not be altered, that the ideals that
have been laid out and the norms that we have collectively agreed to
remain sound.

This is not the only possible resolution to the conflict of foundation
models and ethics, though. To avoid any claims that I present only
one side of an argument, I must mention the alternative course of
action. Rather than avoid foundation models or severely limit their
use, chemistry and related fields could redefine what it is to be moral
to accommodate the presence of “AI” in our society and our profes-
sional lives.

In a sense, this redefinition is actively taking place. Though none
of the professional codes that I discussed in Section 2.2 have been
publicly amended, major chemistry conferences and publications
allow scientific works based on LLMs and other foundation models
with few limitations. While some publication guidelines require that
authors of a manuscript disclose if and how foundation models have
been used in the writing, the door remains open for stochastic plagia-
rism and misinformation, among other possible negative outcomes. It
is logical on the surface to trust that a manuscript’s authors will review
their work to ensure accuracy and check that all ideas have been
properly attributed. However, it may not be obvious at all that a model
has plagiarized or repeated a falsehood. Moreover, by using LLMs or
related tools, authors demonstrate a willingness to cut corners and
potentially reduce their critical thinking, suggesting that this trust may
be misplaced.
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The chemical community must critically reflect on its values,
assessing what ethics are appropriate for the modern field and
modern society and to what extent these values and related norms are
important. This latter point is critical. Even if the community forcefully
reaffirms a dedication to ethical practice, there will almost certainly
be some who behave unethically. As mentioned in Section 2.2, though,
there are few mechanisms in place to call upon when unethical
behavior is identified. Regardless of what chemistry’s values are, they
mean little if the field fails to respond to their violation.

6.3 Lingering Questions
The present work is not meant to be definitive but instead was written
to open a necessary and until now largely ignored conversation. In
service of this aim, I close this article by considering what I have
not been able to address and what future research — ethical and
technical, theoretical and empirical — should be conducted to reach
a satisfactory conclusion.

I have chosen in this work to limit my scope to the chemical sci-
ences, focusing mainly on chemistry and chemical engineering. This
is mainly a reflection of my own disciplinary comfort and background.
As a chemist without significant training in ethics or philosophy, I
feel equipped to tackle moral issues in the chemical sciences, while
I recognize that I may be unequipped to address broader questions.
Nonetheless, broader questioning is needed.

As a starting point, it would be worthwhile to compare the ethics of
foundation models in the the chemical sciences, as discussed here,
with those in the biomedical fields, where a body of work in related
moral concerns is growing.154–156 In particular, the thought put into
regulatory changes in the biomedical literature157 may be relevant for
discussions of scientific ethics. Beyond medicine, it is worth asking
to what extent the ideas presented here generalize to other areas
of science and engineering. Ostensibly all areas of science should
be guided by the same ideals, but different professions may have
different norms and different priorities. As one example, though the
chemical sciences are intimately connected with and concerned for
the environment (and, thus, environmental sustainability), the same
may not be said for other fields such as astronomy.

Even within the more narrow domain of the chemical sciences,
there are many further questions worth exploring. While I have dis-
cussed the general practice of chemistry and associated norms, I
have focused in ways on chemical researchers. How, if at all, do the
conclusions drawn here change from the lens of, e.g., an industrial
chemical engineer, where, e.g., publication ethics may not be impor-
tant, where an individual may not have control over which tools they
use (i.e., they may be required to use “AI” tools by their employer),
and where the interests of the employer frequently put practitioners
at odds with ethical (especially environmental) norms?

6.4 Conclusions
Like microplastics and greenhouse gases, large ML models surround
us. Now that foundation models, from LLMs and generative diffusion
models to “universal” MLIPs, have made their way into society and
into scientific practice, the chemical profession(s) must critically ex-
amine these technologies, assessing their risks and outcomes under
consistent ethical standards. Here, I have begun this work, addressing
the questions “Are foundation models in alignment with scientific and
chemical ethics?” and “How should chemical practitioners interact
with and around foundation models?”

To the first question, an analysis of common ideals and norms
reveals a simple answer: mostly, no. From training to testing and eval-
uation, general-purpose generative foundation models violate most
of the ethical principles that I have identified and described. While
chemistry-specific foundation models, such as protein models and
“universal” MLIPs, avoid many of the ethical problems of more general
models like LLMs and VLMs, they still have a negative environmental
impact that is at odds with the modern understanding of chemistry’s
obligations to sustain and protect the natural environment.

The second question — now that foundation models are a part
of scientific practice, what should be done — is more challenging.
Drawing from the green chemistry, sustainable chemistry, and battery
fields, I suggest that an important step that would bring chemical
practitioners better in alignment with the morals of chemical science
would be to reduce the use of foundation models to truly necessary
applications and to, over time, shift focus to identifying alternative,
ethical methods and technologies that can fill those same unique
niches.

There is much more work to be done at the intersection of data
science, chemical science, and ethics. I hope that my account inspires
further theoretical and technical inquiries in this nascent and much-
needed area of study.
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